Miller effect
In electronics, the Miller effect accounts for an increase in the equivalent input capacitance of an inverting voltage amplifier due to amplification of capacitance between the input and output terminals. Although Miller effect normally refers to capacitance, any impedance connected between the input and another node exhibiting high gain can modify the amplifier input impedance via the Miller effect.

This increase in input capacitance is given by


where
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is the gain of the amplifier and C is the feedback capacitance.

The Miller effect is a special case of Miller's theorem.

History
The Miller effect was named after John Milton Miller. When Miller published his work in 1920, he was working on vacuum tube triodes, however the same theory applies to more modern devices such as bipolar and MOS transistors.

Derivation
Consider an ideal voltage amplifier of gain
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with an impedance Z connected between its input and output nodes. The output voltage is therefore 
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and the input current is
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As this current flows through the impedance Z, this equation shows that because of the gain of the amplifier a huge current flows in Z; in effect Z behaves as though it were much smaller than it is. The input impedance of the circuit is
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If Z represents a capacitor, then
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and the resulting input impedance is
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Thus the effective or Miller capacitance 
[image: image8.wmf]M

C

is the physical C multiplied by the factor 
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Notes
As most amplifiers are inverting amplifiers (i.e.
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<0) the effective capacitance at the input is larger. For non-inverting amplifiers, the Miller effect results in a negative capacitor at the input of the amplifier (compare Negative impedance converter).

Naturally, this increased capacitance can wreak havoc with high frequency response. For example, the tiny junction and stray capacitances in a Darlington transistor drastically reduce the high frequency response through the Miller effect and the Darlington's high gain.

The Miller effect applies to any impedance, not just a capacitance. A pure resistance or pure inductance will be divided by 1 −
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. In addition if the amplifier is non-inverting then a negative resistance or inductance can be created using the Miller effect.

It is also important to note that the Miller capacitance is the capacitance seen looking into the input. If looking for all of the RC time constants (poles) it is important to include as well the capacitance seen by the output. The capacitance on the output is often neglected since it sees 
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and amplifier outputs are typically low impedance. However if the amplifier has a high impedance output, such as if a gain stage is also the output stage, then this RC can have a significant impact on the performance of the amplifier. This is when pole splitting techniques are used.

The impact of the Miller effect is often reduced by using a cascode or cascade amplifier rather than a common emitter. For feedback amplifiers the Miller effect can actually be very beneficial since stabilizing the amplifier may require a capacitor too large to practically include in the circuit, typically a concern for an integrated circuit where capacitors consume significant area.

Impact on frequency response
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Figure 2: Operational amplifier with feedback capacitor CC.
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Figure 3: Circuit of Figure 2 transformed using Miller's theorem, introducing theMiller capacitance on the input side of the circuit.
Figure 2 shows an example of Figure 1 where the impedance coupling the input to the output is the coupling capacitor CC. A Thévenin voltage source 
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 drives the circuit with Thévenin resistance
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. At the output a parallel RC-circuit serves as load. (The load is irrelevant to this discussion: it just provides a path for the current to leave the circuit.) In Figure 2, the coupling capacitor delivers a current 
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to the output circuit.

Figure 3 shows a circuit electrically identical to Figure 2 using Miller's theorem. The coupling capacitor is replaced on the input side of the circuit by the Miller capacitance 
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, which draws the same current from the driver as the coupling capacitor in Figure 2. Therefore, the driver sees exactly the same loading in both circuits. On the output side, a dependent current source in Figure 3 delivers the same current to the output as does the coupling capacitor in Figure 2. That is, the RC-load sees the same current in Figure 3 that it does in Figure 2.

In order that the Miller capacitance draw the same current in Figure 3 as the coupling capacitor in Figure 2, the Miller transformation is used to relate 
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 to 
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. In this example, this transformation is equivalent to setting the currents equal, that is
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or, rearranging this equation
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This result is the same as 
[image: image23.wmf]M

C

 of the Derivation Section.

The present example with 
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 frequency independent shows the implications of the Miller effect, and therefore of 
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, upon the frequency response of this circuit, and is typical of the impact of the Miller effect (see, for example, common source). If 
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 = 0 F, the output voltage of the circuit is simply
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, independent of frequency. However, when 
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is not zero, Figure 3 shows the large Miller capacitance appears at the input of the circuit. The voltage output of the circuit now becomes
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and rolls off with frequency once frequency is high enough that 
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 ≥ 1. It is a low-pass filter. In analog amplifiers this curtailment of frequency response is a major implication of the Miller effect. In this example, the frequency 
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 such that 
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= 1 marks the end of the low-frequency response region and sets the bandwidth or cutoff frequency of the amplifier.

It is important to notice that the effect of 
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 upon the amplifier bandwidth is greatly reduced for low impedance drivers (
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 is small if
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 is small). Consequently, one way to minimize the Miller effect upon bandwidth is to use a low-impedance driver, for example, by interposing a voltage follower stage between the driver and the amplifier, which reduces the apparent driver impedance seen by the amplifier.

The output voltage of this simple circuit is always
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. However, real amplifiers have output resistance. If the amplifier output resistance is included in the analysis, the output voltage exhibits a more complex frequency response and the impact of the frequency-dependent current source on the output side must be taken into account. Ordinarily these effects show up only at frequencies much higher than the roll-off due to the Miller capacitance, so the analysis presented here is adequate to determine the useful frequency range of an amplifier dominated by the Miller effect.

Miller approximation
This example also assumes 
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 is frequency independent, but more generally there is frequency dependence of the amplifier contained implicitly in 
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. Such frequency dependence of 
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 also makes the Miller capacitance frequency dependent, so interpretation of 
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 as a capacitance becomes a stretch of imagination. However, ordinarily any frequency dependence of 
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arises only at frequencies much higher than the roll-off with frequency caused by the Miller effect, so for frequencies up to the Miller-effect roll-off of the gain, 
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 is accurately approximated by its low-frequency value. Determination of 
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 using 
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 at low frequencies is the so-called Miller approximation. With the Miller approximation, 
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becomes frequency independent, and its interpretation as a capacitance at low frequencies is secure.

PAGE  
1

_1327327157.unknown

_1327327829.unknown

_1327328248.unknown

_1327328370.unknown

_1327328399.unknown

_1327328465.unknown

_1327328267.unknown

_1327328328.unknown

_1327328065.unknown

_1327328148.unknown

_1327327946.unknown

_1327327979.unknown

_1327327711.unknown

_1327327729.unknown

_1327327316.unknown

_1327327054.unknown

_1327327099.unknown

_1327326762.unknown

